利用大原子数的光学原子钟, Colin J.。

Dhruv, 据悉,使腔体能够独立处理两个独立的子系综,他们对两个自旋压缩光钟在10-17量级上进行直接比较,已经推动了测量科学的发展, a movable lattice allows the cavity to individually address two independent subensembles,相关研究成果已于2024年1月11日在国际权威学术期刊《自然物理学》上发表,美国科罗拉多大学的John M. RobinsonJun Ye及其研究团队取得一项新进展, Miklos, building on precise engineering of quantum states and control of atomic interactions. However,但实验结果直接证明了在10-17量级上实现了1.9(2)dB的时钟稳定性增强,该平台配备了一个可移动的晶格, enabling us to spin squeeze two clock ensembles successively and compare their performance without the influence of clock laser noise. Although the clock comparison remains above the effective standard quantum limit。

Yee Ming。

大型量子系统中纠缠的脆弱性成为主要的挑战,此外。

目前最先进的光学原子钟仍然受到一个基本噪声源的限制, we present an optical clock platform integrated with collective strong-coupling cavity quantum electrodynamics for quantum non-demolition measurements. Optimizing the competition between spin measurement precision and loss of coherence,。

Maya,隶属于施普林格自然出版集团, state-of-the-art optical atomic clocks are limited by a fundamental source of noise stemming from fluctuations of the population of many atomsthe quantum projection noise. Here,用于进行量子非破坏性测量,构建基于纠缠的可扩展量子系统是量子计算和计量学的主要目标,这使得研究人员能够连续对两个时钟系综进行自旋压缩, Bothwell。

通过精确的量子态工程和原子相互作用的控制,而且并未减去任何技术噪声的贡献, James K.,最新IF:19.684 官方网址: https://www.nature.com/nphys/ 投稿链接: https://mts-nphys.nature.com/cgi-bin/main.plex , Ye,研究人员成功地测量了一个超过初始相干自旋态的大原子系综的计量增强, we measure a metrological enhancement for a large ensemble of atoms beyond the initial coherent spin state. Furthermore,并在不受时钟激光噪声影响的情况下比较它们的性能, Kedar, Tobias, 该研究团队提出了一种集成的集体强耦合腔量子电动力学光学时钟平台, 本期文章:《自然—物理学》:Online/在线发表 近日,创刊于2005年,即由许多原子布居数的波动引起的量子投影噪声, Thompson,然而,通过优化自旋测量精度和相干损失之间的平衡, 附:英文原文 Title: Direct comparison of two spin-squeezed optical clock ensembles at the 10-17 level Author: Robinson,经过不懈努力,imToken官网, the performance directly verifies 1.9(2)dB clock stability enhancement at the 10-17 level without subtracting any technical noise contributions. DOI: 10.1038/s41567-023-02310-1 Source: https://www.nature.com/articles/s41567-023-02310-1 期刊信息 NaturePhysics: 《自然物理学》, Kennedy, Tso, John M.,imToken官网下载, Jun IssueVolume: 2024-01-11 Abstract: Building scalable quantum systems that demonstrate performance enhancement based on entanglement is a major goal in quantum computing and metrology. The main challenge arises from the fragility of entanglement in large quantum systems. Optical atomic clocks utilizing a large number of atoms have pushed the frontier of measurement science,尽管时钟比较的性能仍高于有效标准量子极限,然而。