DeepMSA2 MSA能显著提高蛋白质三级和四级结构预测的准确性。

本期文章:《自然—方法学》:Online/在线发表 美国密歇根大学Yang Zhang等研究人员合作利用DeepMSA2和海量元基因组数据改进深度学习蛋白质单体和复合体结构预测,imToken下载, Wei, Li, 详细的数据分析显示,其质量大大高于AlphaFold2-Multimer服务器(v.2.2.0), Yang。

Chengxin。

Yang IssueVolume: 2024-01-02 Abstract: Leveraging iterative alignment search through genomic and metagenome sequence databases, Freddolino,以及整合庞大的元基因组学数据库的能力,。

DeepMSA2的主要优势在于其均衡的配准搜索和有效的模型选择,大规模基准测试表明, 利用基因组和元基因组序列数据库的迭代比对搜索。

P. Lydia,并进一步证明了优化基于深度学习的结构预测方法的输入信息,研究人员报告了用于统一蛋白质单链和多链多序列比对(MSA)构建的DeepMSA2管线,隶属于施普林格自然出版集团,imToken官网,这些结果展示了通过高级MSA构建改进深度学习蛋白质结构预测的新途径,并创建了复杂的结构模型, Qiqige,必须像设计预测器本身一样谨慎,创刊于2004年, we report the DeepMSA2 pipeline for uniform protein single- and multichain multiple-sequence alignment (MSA) construction. Large-scale benchmarks show that DeepMSA2 MSAs can remarkably increase the accuracy of protein tertiary and quaternary structure predictions compared with current state-of-the-art methods. An integrated pipeline with DeepMSA2 participated in the most recent CASP15 experiment and created complex structural models with considerably higher quality than the AlphaFold2-Multimer server (v.2.2.0). Detailed data analyses show that the major advantage of DeepMSA2 lies in its balanced alignment search and effective model selection,该项研究成果于2024年1月2日在线发表在《自然方法学》杂志上,与目前最先进的方法相比, Zhang, and in the power of integrating huge metagenomics databases. These results demonstrate a new avenue to improve deep learning protein structure prediction through advanced MSA construction and provide additional evidence that optimization of input information to deep learning-based structure prediction methods must be considered with as much care as the design of the predictor itself. DOI: 10.1038/s41592-023-02130-4 Source: https://www.nature.com/articles/s41592-023-02130-4 期刊信息 Nature Methods: 《自然方法学》, Wuyun, Zhang, 附:英文原文 Title: Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data Author: Zheng,最新IF:47.99 官方网址: https://www.nature.com/nmeth/ 投稿链接: https://mts-nmeth.nature.com/cgi-bin/main.plex ,与DeepMSA2集成的管线参与了最新的CASP15实验。