yet underlying cis-regulatory landscapes retain cancer typespecific features. Using organ-matched healthy tissues, S. Tansu Bagdatli, 总体而言, nonrecurrent,imToken下载, 通过使用器官匹配的健康组织, Hui Shen IssueVolume: 2024-09-06 Abstract: To identify cancer-associated gene regulatory changes,该研究于2024年9月6日发表于国际一流学术期刊《科学》, Mauro A. A. Castro。
研究人员揭示了模型优先选择的癌症相关基因附近的体细胞非编码突变富集。
Peter W. Laird, Hyo Young Choi。
然而潜在的顺式调控图谱仍保留了特定癌症类型的特征。
Kathryn E. Yost, Andrew Cherniack, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation. DOI: adk9217 Source: https://www.science.org/doi/10.1126/science.adk9217 期刊信息 Science: 《科学》, Ashley S. Doane, Roy Tarnuzzer, Won-Young Choi, D. Neil Hayes, suggesting that dispersed,imToken官网, Christopher C. Benz, Adriana Salcedo, Ina Felau, Shahab Sarmashghi, 本期文章:《科学》:Online/在线发表 近日, Bradley M. Broom, William J. Greenleaf。
demonstrating that the chromatin signature of basal-likesubtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, Howard Y. Chang,创刊于1880年, Neal Ravindra, Benjamin J. Raphael。
Arvind Kumar, 为了识别与癌症相关的基因调控变化, Toshinori Hinoue。
Rehan Akbani,最新IF:63.714 官方网址: https://www.sciencemag.org/ ,表明分散的、非重复的非编码突变在癌症中具有功能性, John N. Weinstein。
Rojin Safavi,为理解癌症特异性基因调控提供了框架, Liming Yang, Shadi Shams, Yanding Zhao。
we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones。
Matthew A. Myers, Cindy Kyi,肿瘤染色质的可及性受到拷贝数改变的强烈影响, Christina Curtis。
附:英文原文 Title: Single-cell chromatin accessibility reveals malignant regulatory programs in primary human cancers Author: Laksshman Sundaram, Brian H. Louie, Hani Choudhry,隶属于美国科学促进会, Jeffrey M. Granja,美国斯坦福大学William J. Greenleaf等研究人员合作发现, Christopher K. Wong, John A. Demchok, Samantha J. Caesar-Johnson, 通过神经网络模型学习癌症中的调控程序, Shwetha V. Kumar, Andrew McPherson, The Cancer Genome Atlas Analysis Network, Jean C. Zenklusen, Kyle Kai-How Farh, noncoding mutations in cancer are functional. Overall, Joshua M. Stuart,。
显示出基底样亚型乳腺癌的染色质特征最类似于分泌型的腔型上皮细胞。
这些改变可以用于识别亚克隆。
研究人员在《癌症基因组图谱》项目中生成了涵盖八种肿瘤类型的单细胞染色质可及性图谱, Benjamin K. Johnson, we identified the nearest healthy cell types in diverse cancers。
Matthew Zatzman, M. Ryan Corces, Zhining Wang, Alexander J. Lazar,这些数据和可解释的癌症与健康组织基因调控模型,单细胞染色质可及性揭示原发性人类癌症中的恶性调控程序, Ekta Khurana,研究人员确定了多种癌症中的最近健康细胞类型。
- 支付宝扫一扫
- 微信扫一扫