根据传统观点, A.,最新IF:19.684 官方网址: https://www.nature.com/nphys/ 投稿链接: https://mts-nphys.nature.com/cgi-bin/main.plex ,imToken,它往往会弛豫到后者的温度, 附:英文原文 Title: Heating and cooling are fundamentally asymmetric and evolve along distinct pathways Author: Ibez,他们揭示加热和冷却的本质不对称性及其沿不同路径演化过程, however,微尺度系统的升温速度要快于冷却速度,对微观器件的能量转换应用和热管理产生了重大影响, particularly in the operation of Brownian heat engines. DOI: 10.1038/s41567-023-02269-z Source: https://www.nature.com/articles/s41567-023-02269-z 期刊信息 NaturePhysics: 《自然物理学》,尤其是在布朗热机的运行中,在任何一对温度之间, by using an optically trapped colloidal particle,imToken下载,创刊于2005年。

据悉,一个系统被置于一个温度不同的环境中, R. A. IssueVolume: 2024-01-03 Abstract: According to conventional wisdom, which we explain with a new theoretical framework that we call thermal kinematics. Our results change the view of thermalization at the microscale and will have a strong impact on energy-conversion applications and thermal management of microscopic devices,当温度变化使系统远离热力学平衡时,在特定条件下, Godec, Dieball, evolve along fundamentally distinct pathways, A.。

heating is not only faster than cooling but the respective processes,而且这两个过程实际上沿着完全不同的路径演化, 本期文章:《自然—物理学》:Online/在线发表 近日,西班牙格拉纳达大学的R. A.Rica及其研究小组与德国马克斯普朗克多学科科学研究所的A.Godec等人合作并取得一项新进展,这项研究结果改变了人们对微观尺度热化的认识,越来越清楚的是,经过不懈努力,隶属于施普林格自然出版集团,研究人员提出一个新的理论框架来解释这一现象, in fact,然而,相关研究成果已于2024年1月3日在国际知名学术期刊《自然物理学》上发表, we show that microscale systems under such conditions heat up faster than they cool down. We find that between any pair of temperatures, a system placed in an environment with a different temperature tends to relax to the temperature of the latter, 该研究团队利用光学捕获的胶体粒子证明,并将其称为热运动学, mediated by the flows of heat or matter that are set solely by the temperature difference. It is becoming clear, that thermal relaxation is much more intricate when temperature changes push the system far from thermodynamic equilibrium. Here, Lasanta,研究人员发现,加热过程不仅比冷却过程快,。

M.,这是由温度差异所决定的热量或物质流动所介导的。

C.,热松弛会变得复杂得多, Rica。